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CONVERGENCE OF SECOND-ORDER SCHEMES 
FOR ISENTROPIC GAS DYNAMICS 

GUI-QIANG CHEN AND JIAN-GUO LIU 

ABSTRACT. Convergence of a second-order shock-capturing scheme for the sys- 
tem of isentropic gas dynamics with L?? initial data is established by analyzing 
the entropy dissipation measures. This scheme is modified from the classical 
MUSCL scheme to treat the vacuum problem in gas fluids and to capture local 
entropy near shock waves. Convergence of this scheme for the piston problem 
is also discussed. 

1. INTRODUCTION 

We are concerned with the following system of isentropic gas dynamics: 

Pt+ MX = 0 , 
mt + (m21p +p(p))x = 0 

where p is the density, m is the momentum, p(p) = pY/y is the pressure, and 
1 < y < 5/3 is the adiabatic exponent. Because of the presence of vacuum, 
p = 0, the system is not strictly hyperbolic. This fact causes many difficulties 
in theoretical analysis and numerical computation. Away from the vacuum, we 
can define u = m/p as the velocity. 

We focus mainly on the convergence of high-order difference schemes for the 
Cauchy problem with LOO initial data for (1.1): 

(1.2) (P' m) LO=0 = (p0(x), mO(X)), 
where mo(x) and po(x) > 0 ($ 0) are bounded measurable functions. We also 
discuss a mixed initial-boundary problem on a domain D-the piston problem: 

(1.3) I (P m) It=o = (PO(X) mo(X)), 0< x < L, 
* m(xj(t) t) - p(xj(t), t)uj(t) = O., t > 05 j = 1, 2, 

where 
(D = {(x, t): xI(t) < x < x2(t), t > O}, 

( 1.4) 4 xI (t)= ul (s) ds, x2(t)= L + u2(s) ds, 
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uI (t) and u2(t) are bounded measurable functions that denote the velocities of 
the pistons, and xi (t) and x2(t) denote the moving boundaries. 

MUSCL (monotonic upstream centered schemes for conservation laws) 
schemes are the second-order schemes, first introduced by van Leer [24]. Begin- 
ning with the cell average of initial data, one first constructs a linear function 
on each cell to approximate the initial data. Second, one solves the equation 
with the piecewise linear function just constructed as initial data for a small 
time step. Then one averages the solution at each small cell, reconstructs a 
piecewise linear function again, and repeats these steps again and again. An es- 
sential requirement in reconstructing the piecewise linear functions is that they 
do not contain intolerable oscillations. This technique, called reconstruction, 
has been generalized to high-order polynomials. The generalized schemes are 
called Godunov-type schemes (cf. the Godunov scheme [8]). The piecewise 
parabolic method (PPM) [27] is an example of a third-order scheme, and essen- 
tially nonoscillatory (ENO) schemes [9, 10] are examples of even higher-order 
schemes. Like the MUSCL schemes, the Godunov-type schemes can be written 
in the the following abstract form (cf. [9]): 

(1.5) Vn+- = Eh(At) a an=A o E(At) o R(., Vn). 

Here, 'n is the numerical solution approximating v(., nAt), Ah is the cell- 
averaging operator, E(t) is the exact evolution operator, and R(x, v) is the 
reconstruction step, where h and At are the space and time step sizes, re- 
spectively. The Godunov-type schemes represent the following "modern tech- 
niques" in the numerical computations of hyperbolic systems of conservation 
laws: achieving high accuracy at least where the solution is smooth, producing 
good resolution for the shocks and the contact discontinuities, and avoiding su- 
perfluous oscillations and nonphysical discontinuities (e.g., expansion shocks). 

In applying the MUSCL schemes to the system of isentropic gas dynamics, 
we need to modify the slopes in the reconstructed piecewise linear functions at 
points near the vacuum to avoid negative density, which may be produced in 
the reconstruction step. We also need to modify the slopes at points of steep 
gradient of the solutions to capture local entropy. Since our analysis is based on 
a uniform L?? estimate that is much weaker than the BV (bounded variation) 
estimate, we can relax the TVD (total variation diminishing) requirements for 
the reconstruction step of the standard MUSCL schemes. The MUSCL schemes 
with the above-mentioned slope modification can achieve second-order accuracy 
in the smooth regions of the solutions. Of course, as is well known, it is impos- 
sible to get high-order accuracy near shock waves and the vacuum states. The 
slope modification technique can be easily implemented numerically. Some 
similar modification techniques were also applied to high-order schemes for 
conservation laws (cf. [4, 5, 12, 14, 20, 21, 25, 26]). 

For one-dimensional scalar conservation laws, one advantage of TVD 
schemes or, even more generally, TVB (total variation bounded) schemes, is that 
there is always a convergent subsequence based on the Helly principle. Thus, 
the crucial task is to prove that the limit solution satisfies the entropy inequal- 
ities. Osher [17] proved the convergence of a class of semidiscrete generalized 
MUSCL schemes for the strictly convex case. For further discussions, also see 
[13, 28]. For systems of conservation laws, it is generally impossible to get TV 



CONVERGENCE OF SECOND-ORDER SCHEMES FOR ISENTROPIC GAS DYNAMICS 609 

(total variation) estimates for difference schemes, even the TVB schemes. 
The main objective of this paper is to prove the convergence of this second- 

order shock-capturing scheme. By convergence here we mean that there is a 
subsequence that converges to a generalized solution satisfying the entropy con- 
dition. As long as the entropy solution is unique, the whole sequence con- 
verges to the physical solution. In order to get convergence, we need some 
compactness and entropy inequality estimates for the approximate solutions. 
More specifically, we estimate a uniform bound for the approximate solutions 
Vh and estimate the Hiij compactness for the entropy dissipation measures 

(hi q) 
= ?I(Vh)t + q(vh)X associated with all weak entropy pairs (ia, q). This 

method is based on the idea of compensated compactness, which was first stud- 
ied by Murat and Tartar [15, 23] and successfully applied to the system of 
isentropic gas dynamics by DiPerna [7] for viscosity approximations for the 
case y + 2 , m > 2 integers, and by Chen [2] and by Ding, Chen, and 
Luo [6] for the Godunov scheme and the Lax-Friedrichs scheme for the general 
case 1 < y < 5/3. 

We achieve a uniform bound for the approximate solutions Vh by combining 
the principle of invariant regions for systems of conservation laws with some 
careful estimates, especially near the vacuum points (see ?4.1). The main tech- 
niques (described briefly below and in detail in ?4.2) involve H-Ij, compactness 
estimates of the weak entropy dissipation measures 1(Vh)t + q(Vh), . We achieve 
the entropy inequalities by following the techniques from the compactness es- 
timates (see ?4.3). 

First, by the dominant property of mechanical entropy, we can show that 
any weak entropy pair is a linear combination of a convex weak entropy pair 
and the mechanical entropy pair, which is also convex (also see [3]). Thus we 
need only the compactness estimates for all convex entropy pairs. Next, by 
duality and the Sobolev interpolation inequality, we need to estimate only the 

,j0Cl compactness and the w1 q bound of the convex entropy dissipation 
measures for some 1 < p < 2 < q < o0, instead of the HI1j7 compactness [1]. 
The 1c q bound estimate of the dissipation measures is a direct consequence 
of the uniform bound of approximate solutions Vh . 

The dissipation measures are supported mainly on the shocks of the approxi- 
mate solutions in the regions R x (t, -1, t,), and on the interfacial lines R x {tn } 
for all discrete time steps t, . We refer to them as the shock parts of the dissipa- 
tion measures and the interfacial parts of the dissipation measures, respectively. 
On the time intervals (tn-i, tn) Vh are generalized solutions constructed by 
the Godunov scheme. Hence, by the entropy inequalities of the generalized 
solutions from the Godunov scheme, we know that the shock parts of the dissi- 
pation measures are negative for any convex entropy pair. Since the embedding 
of the positive cone of W- 1, P in W- 1X q is completely continuous for all q < p 
[15], we need only to estimate the W-c 'P bound of the interfacial parts of the 
dissipation measures on the interfacial lines for some p > 1 

The most detailed calculation, of course, involves bound estimates of the 
interfacial parts of the dissipation measures, which come from the averaging 
process and the reconstruction process of the scheme. The averaging pro- 
cess is entropy-decreasing, while the reconstruction process usually is entropy- 
increasing. We denote the dissipation measures from these processes as H h 

(j, q) 
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and h q)' respectively, and estimate each of them separately. One difficulty 
in the estimates is the singularity of the Hessian matrices of weak entropies at 
the vacuum points. To overcome this difficulty, we use an exact mean value for- 
mula to expand the errors near the vacuum points. We also use the following 
properties of the singularity. In the physical plane p-m, the Hessian matri- 
ces of the weak entropies have singularities at the vacuum points, but they are 
dominated by the Hessian matrix of the mechanical energy. In the Riemann 
invariants plane w-z, however, the Hessian matrix of any weak entropy has no 
singularity. We estimate the mechanical energy first and estimate the general 
weak entropies afterwards. We point out that some of these estimates were dis- 
cussed in [7] in the analysis of the convergence of the viscosity solutions to the 
system of isentropic gas dynamics, but our estimates for the difference schemes 
involve more careful analysis and more sophisticated techniques to handle the 
discrete errors. The estimate of the averaging process is similar to that of the 
Godunov scheme [2, 6]. 

We can summarize the above steps as the following strategy to analyze the 
convergence of Godunov-type schemes for systems of conservation laws. First, 
we construct global solutions for the Riemann problems by using classical meth- 
ods; it is easy to check the properties of the Riemann solutions, such as entropy 
inequalities and invariant regions. Then we show that the approximate so- 
lutions of the Godunov scheme for general initial value problems or mixed 
initial-boundary value problems have subsequences that converge to a general- 
ized solution. We refer to this solution as the generalized solution constructed 
by the Godunov scheme. We can show that the generalized solution retains 
many important properties, such as entropy inequalities and invariant regions. 
Once we have the generalized solutions for the Cauchy problems or the bound- 
ary value problems, we can construct and analyze higher-order schemes. For 
example, the piston problem discussed by Nishida and Smoller [16] are very 
complicated, mainly as a result of the reflection of shock waves at the rigid wall, 
where the strength of the reflected shock is usually greater than the strength of 
the incoming shock. We can easily use this strategy to prove the convergence 
of the second-order scheme for the piston problem (1.1) and (1.3) (see ?5 for 
more details). It would be interesting to further analyze the MUSCL scheme 
and higher-order schemes by using this strategy. 

2. SYSTEM OF ISENTROPIC GAS DYNAMICS 

In this section we first introduce some basic facts about the system of gas 
dynamics (1. 1). For more details, see Chen [ 1 ] and Lax [ 11]. The system (1. 1) 
can be rewritten as follows: 

Vt + f(V),= Vt + Vf(v)v' = 0, 

where 

V (m)V' f(V) (m2/p +pY/y) 

and 

Vf = (_m2/p2 + pY-1 2np) 
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The eigenvalues of the system (1.1) are 

2=pP, A22 p+P, 
p p 

and the corresponding eigenvectors are 

r= (1, Lpa) , r2=Q1 + p)T, 

where c = pO is the speed of sound and 0 = (y- 1)/2. When p = 0, referred 
to as the vacuum, the two wave speeds coalesce, and the system (1.1) loses 
strict hyperbolicity, which is an essential feature in gas dynamics and causes 
many difficulties in theoretical analysis and numerical computation. Define the 
Riemann invariants 

(2.1) w m + m _ p 

which satisfy 
Vw.rl = Vz~r2 = 0. 

Denote sets IC and Ac as 

(2.2) c = {(p m): O p < C, Iml <C p}, 
Ac = {(p, m): w < C z > -C, w - z > O}. 

Directly from the identities (2.1), we have the following lemma. 

Lemma 2.1. For any positive constant C, the sets Ic and Ac are closed convex 
sets in the p-m plane. Furthermore, there are positive constants Ci and C2 such 
that 

Ac C c, and XIc CAc2 . 

Definition 2.1. A pair of mappings i: R2-+ R, q: R2 + R is called an entropy- 

entropy flux pair if it satisfies the identity 

(2.3) Vq = VijVf. 

Denote 4(p, m/ p) = il(p, m) . If 4(0, u) =0, then il is called a weak entropy. 

Among all entropies, the most natural entropy, the mechanical energy, 

1 m2 1 
(2.4) II* (p m) = 2 + ~- P~Ys 

will play an important role in our analysis. One can easily check that the me- 
chanical energy is a strictly convex weak entropy. 

Definition 2.2. We call a functional ji(, q) an entropy dissipation functional 
associated with a weak entropy pair (ia, q) if 

(2.5) (/I(,(,q a t))q q) = -Jj ( (V)q+q(V) 0X )dxdt - i (v) 1t=0 dx, 
2 

00 

for any function E C0G (R 2), 42 (-Xc, oc) X [0, oc) . We also denote 
JL(?, q) as 

(2.6) 9(?,q) = i1(v)t + q(v)x. 
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If v is replaced by an approximate solution Vh, then the entropy dissipation 
functional is denoted as h and is referred to as an entropy dissipation 
functional associated with the weak entropy pair (ia, q) and the approximate 
solution Vh. 

Remark 2.1. If the function v in (2.6) is a BV function, then the entropy 
dissipation functional J(,,q) is a Radon measure which is referred to as an 
entropy dissipation measure. The approximate solutions Vh constructed in ?3 
are BV functions. Therefore, we use the word measure instead of functional 
throughout this paper. 

Definition 2.3. A bounded measurable function v(x, t) = (p(x, t), m(x, t)) 
is called a generalized solution of the Cauchy problem ( 1. 1)-( 1.2) if it satisfies 
the following conditions: 

(1) For any (x, t) E COOO(R 2), we have 

(2.7) j (vq t +f(v)qx) dxdt+ J vo(x)(x, O)dx = 0. 
R2 -oo 

(2) For any convex weak entropy pair (ai, q), and any X(x, t) E CO(2), 
q> 0 and (x, 0) = 0, we have 

(2.8) J (n(v)qt + q(v)qx) dx dt > 0. 
R2 

Remark 2.2. An equivalent definition of the generalized solution to the Cauchy 
problem (1.1 )-(1.2) is that the entropy dissipation measures (,, q) associated 
with all convex weak entropy pairs (ia, q) are negative. 

The following compactness framework and existence theorem of the global 
generalized solution to the Cauchy problem (1.1)-( 1.2) are established in Chen 
[2] and Ding, Chen, and Luo [6]. 

Theorem 2.1. Suppose that the approximate solutions Vh(X, t) = (ph(X, t), 
mh (x, t)) for the Cauchy problem (1 .1 )-(1.2) satisfy the following framework: 

(1) There is a constant C > 0 such that 

(2.9) O < Ph(X, t) < C, Imh(X, t) < CPh(x, t), a.e. 

(2) For any weak entropy pair (qi, q), the associated entropy dissipation 
measure 

(2.10) Ah ) = q(Vh)t + q(Vh)x is compact in Hj- (R+). 

Then there exists a subsequence (still labeled) (Ph, mO) such that 

(2.11) (Ph(X, t), mh(x, t)) -+ (p(x, t), m(x, t)), a.e. 

Theorem 2.2. Suppose that the initial data vo(x) = (po(x), mo(x)) satisfy 

(2.12) 0 < po(x) < M, Imo(x)I < Mpo(x), 

for a constant M > 0. Then there exists a global generalized solution v (x, t) = 
(p(x, t), m(x, t)) for the Cauchy problem (1.1)-(1.2). In particular, for any 
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tl, t2 E [0, T], any convex weak entropy (l, q), and any X E CO (R2), X> O, 
the solution v (x, t) satisfies 

t2 00 

JJ j (I (v)qOt + q(v)qOx) dx d t 
(2.13) t1 -00 

> j j(v)$ It=tl dx-j C(v)+ It2 dx. 
-00 -00 

3. THE SCHEME 

Let h and At be the space and time step sizes, respectively. Assume that 
h = AAt, for some appropriate constant A so that the Courant-Friedrichs-Levy 
condition 

max )Aj((v)I < A 
j=1,2 

holds. Partition the real line t, = nAt into cells, with the jth cell centered at 
xj = jh, j = , I, ?2. Denote v7 as the numerical approximation to 
the exact solution v (xj, t,), or the cell average of the exact solution v (x, t,) 
on the jth cell (Xj>112, Xj+112), Xj+112 = (j + 1/2)h. Let (w7, ZI) be the 
Riemann invariants of (p7, m), and A+W Wn7l -W7, AW _ W7 -W71, 
etc. Our second-order shock-capturing scheme can be written in the abstract 
form (1.5). The detailed construction is given below. 

Reconstruction. On the cell (Xj-112, Xj+112), we use the following linear 
vector function (pn (x), m+(x)) to replace the cell average (p7 , mq) in order 
to improve the approximation accuracy: 

(3.1) p+(x) = + ajn (xxj) 

where (a'J, /jn) is the constant vector given by 

(ajn~ (jn)1 n -sn 

(3.2) j 

f(C) = 2 pn +(pn)0 ' +(pjn) (tin 
and the constant vector (sjn, tjn) satisfies the following two conditions: 

(1) 

hsn hsn htn. htn. 
(3.3) -Moh < ' j ____ h' tj ' < 1 +Moh, .A+wjn Aw7' A+zl' AZ- ? 

where MO > 0 is a given constant; 
(2) 

(3.4) 1s7n1, ItnlI < min(l, w7 - z7)h!a 

where 0 < a < 1/2 is a given constant. 

Solution in small time. As a result of the convergence of the Godunov scheme, 
we can exactly solve the following Cauchy problem for tn < t < tn+: 

(OVh O9f(Vh) -0 {ah+ ah)= 0 
(3.5) at + x 

We dt=tx = v(x) 
We denote vn+ '(x) = Vh (x, tn+1 - 0) X 
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Cell averaging. We take the average of vl+1 (x) in the jth cell as 0+1, that 
is, 

(3.6) vJ +l = J;JXvI~/ (x) dx. 
x-1/2 

We also refer to Vh(X, t) = (ph(X, t), mh(x, t)) in the above construction 
steps as the approximate solutions of the second-order scheme. 

Remark 3.1. There are many approaches for constructing the slopes (sj, tjn) to 
achieve the condition (3.3). The minmod choice [24], the second-order ENO 
scheme [10], and the UNO scheme [9] are examples that have been widely used. 
The minmod choice is TVD and has the following formula: 

(s7, tjI) = minmod(v7+1 -0v, v7 - 0 ), 

where 
( x, if IXI < IYI, 

minmod(x, y)= { if xy < 0O 

ty, if jyj < xI. 

Remark 3.2. The condition (3.4) is to prevent negative density near the vacuum 
points and to capture local entropy near the shock waves. To achieve this 
condition, we have the following filter (still denoted as (s7, tj7)): 

(3.7) (s7 , t) -- filter ((s , tjn), c7) 

where 
c= min(1, w7 - )h-a 

and 
X x, if 1xI< c 

filter (x, c) = - ifx < -c, 

c, ifX > C. 

We can improve the condition (3.4) near the vacuum to 

Isj-t l? < (w7-z )/h 

if we reconstruct the piecewise linear functions in the Riemann invariants. In 
this case, the scheme is no longer conservative in the sense of Lax-Wendroff 
[12], and we can still prove convergence of this scheme by some modification 
of the proof in ?4 and ?5. 

Remark 3.3. In the "solution in small time" step, we use an exact solution for 
analytical convenience. In numerical computations, one usually uses numerical 
approximation solvers such as the Roe solver [ 18], the Runge-Kutta time discrete 
technique [ 19], and the Cauchy-Kowalewski analytic expansion [ 10], which have 
been developed to achieve high accuracy and easy implementation. 

Remark 3.4. The condition (3.3) is a relaxed BV version of the original MUSCL 
scheme, in which one takes MO to be zero in (3.3) and the second-order accuracy 
at the extreme points is lost. The slopes constructed in Remark 3.2, such as the 
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minmod, ENO, and UNO choices with the filter (3.7), can achieve the accuracy 
condition: 

{ hsq/A+wq = 1 + 0(h) = hs7/Aw7, 

|htlA+z7 = 1 + 0(h) = htl/A-z. 

This implies second-order accuracy in the smooth regions (see Osher [17]). 

4. CONVERGENCE ANALYSIS 

4.1. Uniform bound. 

Lemma 4.1. Let (w+(x), z+(x)) be the Riemann invariants of (p+(x), m+(x)). 
Suppose that there is a constant Cn > 0 such that (p> 5 m7) E Ac" for all integers 
j. Then we have 

(4.1) 1 Iu0(x)-w7-s7(x-Xj) ? 

IZ+ (X) _- Z- tq (X-)I 
_ 

<-h2j 2-C 

as h1- < f3/2, where =(y- 1)/2 and 0< a < 1/2. 

Proof. Directly from (3.2) and (3.4), we have 

1 -aOn -tln_ -a (4.2) II 71 2p1 -) t7 < (p7)1-0(w7 - z7)h h 

and 

-n IpJ (s57 - t7) + (pj7)(s7 + t7) 171 2 p1 

(4.3) - (PJ) I(w7 + zq)(s7 - t7) + 0(w7n - 

+)(s7+ 

< Cn(p-n z-O(w-7 z)h-a = p7h-Cn. 

The estimates (4.2) and (4.3) together with (3.1) lead to 

+ IP()P71 < P7^- 

(4.4) 1 
Im+(x)- mq1 < n 

phI-C.n 

Taking the Taylor expansion for w+ and z+ gives 

{4 u4 f w+(x) = w7 + s7(x - x1) + a7(x-x})2, 

( z+(x) = z7 + t7(x -x) + b7(x j)2 

where 

r aq = (2iM/,p + (6 - 1)((Pq7)o) (a7)2 -2 _ p 
(4.6) (5f)2 (,5fl)2' 

(bj = (2,hq/,jn - (6 - 1)(,P5q)o) (al) -2 
__ 
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and pj and MJ are the mean values. We have from (4.4) that 

(4.7) ,1 < I /d < I ? (1 + 2h1-a) < 2 

Pqo- (lp; 6q 
and 

(4.8) 7 < 2 pj + o~h -Cn) < 3Cn 

as h1- < 0/2. Since 0 < 6 < 1, one has 

(Pj ) < (2p )0 = -2260(w - zi) < 2Cn. 

Using (4.2)-(4.3) and (4.6)-(4.8), one obtains 

lajl, jbjl - 620 h2aC. 

Therefore, 

l.(XXjj2 1 <400 2-2 Cn laq(x - x}2 ?~ 
(4.9) { 40 

t bJ(X -xj)2i < 40 h2-2a~ 

Combining (4.5) and (4.9) gives (4.1). C] 

The property of the invariant regions for the Riemann problems can be found 
in Chen [ 1]. As a direct consequence of the convergence of the Godunov scheme, 
we know that the generalized solutions constructed by the Godunov scheme for 
the Cauchy problem also have invariant regions. This gives the following lemma. 

Lemma 4.2. The regions Ac are invariant regions for the Cauchy problem ( 1.1)- 
(1.2). More precisely, if the initial data belong to Ac, then the generalized 
solutions constructed by the Godunov scheme for the Cauchy problem also belong 
to Ac. 

Theorem 4.1. Let Vh = (Ph, mh) be the approximate solutions of the second- 
order scheme (1.5). Assume the initial data v E XM for some constant M > 0. 
Then there is a constant MT > 0 independent of h such that Vh(X, t) E AMT 
for allx ER, O<t<T. 
Proof. Lemma 2.1 tells us that there is a constant Co > 0 such that 

Vj = (p%, mP) E Xm C AcO. 

Lemma 4.1 implies 
V+(X) E ACo(1+Noh) 

and, for any x E R, O < t < t1= At, 

Vh(X, t) E ACO(1+Noh). 

Using Lemma 2.1, one knows that ACo(1+Noh) is a convex set in the p-m plane. 
Thus, 

V. - 1 f i 2v 1 (x) dx E Ac(1 +Noh). 
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Repeating these arguments gives 

Vh(X, t) E Ac0(1+Noh)n C AC0exp(NoT) 

for any x E R, 0 < t < t, < T. Using Lemma 2.1 again, we obtain 

Vh(X, t) E AC0 exp(NoT) C EMT A 

for any x E R, 0 < t < T. This completes the proof of the theorem. 5 

4.2. Compactness of the entropy dissipation measures. In this subsection we 
estimate the Hj7,l compactness of the entropy dissipation measures ph 

?(Vh)t + q(vh)x associated with all weak entropy pairs (i, q) and the approx- 
imate solutions Vh of the second-order scheme. We first estimate the entropy 
dissipation measures resulting from the reconstruction process and the averag- 
ing process of the scheme. The following definition describes each of them. 

Definition 4.1. We call Radon measures 9h and ,'h the dissipation mea- " 
(1, q) (1, q) 

sures resulting from the reconstruction process and the averaging process of the 
dissipation measure (4 q)' respectively, if for any function 0 E CO (R2 ), 

r (j~hq)' '7) = X jiI (t/(vn)- t(v7))q$(x tn)dx, 

(4.10) ( j)n = Xj+1/2 

h X) = 
+ 

((Vn) - I(vn))q(x, tn)dx. 
j,n i-1/2 

The construction of the scheme (specifically, the solution in small time step) 
says that Vh (X, t) is a generalized solution for the Cauchy problem (1.1)-( 1.2) 
on the time interval (tN-I, tn) . For any convex weak entropy pair (I, q) and 
any positive function 0 E Co(R2+), Theorem 2.1 states that 

/stn /0 ? 

(4.11 !i~J (I(Vh) t + q(Vh)qOx) dx dt 
(4.11) tn-1 -oo 

? J C(vn)q$(x, t~) dx - j (v+)q(x, tn1) dx. 

Summing over all time intervals, we have 

1R (V7(Vh)qOt + q(vh)qOx) dx dt + J 1(v+)0(x, 0) dx 
R2 -oo 

(4.12) +0 00 

> zJ (t,(vn) - t(Vn))q$(X, tn) dx, 
n=l 

or 

(I4h q) J ( (vn) j 
t/(Vn))0(X, tn) dx. 

n=1 -? 
The right side of this inequality is the interfacial part of the dissipation measure 

h I which can be decomposed into the sum of the dissipation measures re- 

sulting from the reconstruction process and the averaging process (4.10). Thus, 
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If we take (v, f(v)) as the entropy pair in (4.11), then the inequality (4.12) 
becomes an equality because of the Rankine-Hugoniot condition, namely, 

(4.14) ~ ~~~h --gh . (4. 14) Ai(,f(v)) (Vf(V)) + (v,f(V)) 

One difficulty in estimating dissipation measures is due to the singularity of 
the Hessian matrices of the weak entropies at the vacuum points. The following 
lemma describes the properties of the singularity. In the physical plane p-m, 
the Hessian matrices of weak entropies have singularities at the vacuum points; 
however, they are dominated by the Hessian matrix of the mechanical energy. 
But, in the Riemann invariant plane w-z, the Hessian matrix of any weak 
entropy has no singularity. 

Lemma 4.3. Let (l, q) be any weak entropy pair, and let (tj., q*) be the me- 
chanical energy pair. Then, on the set XK, we have that 

(4.15) IV(w~z)?lI ? C, IV(2W z)?l ? C, 

and, for any vectors ri and rj, 

(4.16) IV(pm)?1 ? C, IrT.V7p ,m)?l rI < C rT.,V2p ,m)?*. rji 

where C is a constant depending only on It and the constant K > 0. We use 
the same notation I? in the p-m plane and the w-z plane in the subsequent 
development. 
Proof. We conclude from the entropy equation (2.3) that any weak entropy I 
satisfies the following Euler-Poisson-Darboux equation: 

?IWZ + w- (nw - z) = ?, 

where ,B 3=23-1) > 0. Solving this equation, we know that any weak entropy 
?I has the Darboux representation formula 

1j(w, z) = [(w - s)(s - z)] 0(s) ds 

for any continuous function 0(s) . By changing the variables, we have 

I 

j(W, Z) = (W _ z)2/(-1l) j[(l - )]fo -(w - (w - z)T) dT. 

A possible singularity for q can occur only at the vacuum points. Since the 
leading term is (w - z)2/(y-'), 1 < y < 5/3, we know that the gradient and the 
Hessian matrix of the weak entropy have no singularity in the plane w-z. This 
fact gives the estimate (4.15). The estimates (4.16) can be found in [1]. 0 

We assume that the initial data vo(x) = (po(X), mo(x)) E XM, for some 
constant M > 0. We know from Theorem 4.1 that there is a constant MT > 0 
independent of h such that Vh (X, t) E XMT for any (x, t) E R x [0, T]. 
Therefore, the assumption of Lemma 4.3 is valid for Vh . 
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Lemma 4.4. Let Vh = (Ph, mh) be the approximate solutions of the scheme 
(1.5), t be a weak entropy, and let Q c R4 be a bounded open set. Then we 
have 

r E JXi(X+1/2 (()(vn))ndx ? Chl2a, 

I Z jXJ+l2i v n- vj2 dx < Ch < , 

where C is a positive constant independent of h . 
Proof. Since w+~(x) and z+(x) are the Riemann invariants of v+(x) = (p+(x), 

m(),we have 

f-1+/22 xi+1/2 

(4.17) (x- d = n (t'(w+, 4)- _ (w7, zn))dx, 
xj -1j/2 xj1 J/2 

where we use the same notation t in the p-n plane and the w-z plane. 
On the cell (x1112, xan 12)n, taking the Taylor expansion for (w+, z+) leads 

to 

(4.18) =V(w z)?l(Wyn zi)(w+-w 7,4zniZ)T 

+ - (+wjn, 4- zin) V( Z)1(4)(w+ - w7, zn- z) T, 

where 4 is a vector intermediate between (w+, z+) and (wJ, zj) . Integrating 
the first term on the right-hand side of (4.18) on the cell (x>11/2, x1+112) and 
using (4.1), one has 

X J1 x+/2 T 

?VC ] (S-q(x-xj) +h2 2aWZ)dx _ Ch3 2zad. 
X12X-1/2 

The bound of Vsh and Lemma 4.3 implies 

(4.19) |I(w+-w7n, z+ _zj')V(2W 41(<:)(fl+-j _ nzi)TI 

<?Cj(w+-w7, 4z+_zn)2 < Ch2-2a. 

The last inequality comes from (3.4) in the reconstruction step of our scheme 
and (4.1). This fact gives us 

I J J(q(W+4 Zq) -W i(W7, zn)) dx <Ch3-2. 

Summing over all cells leads to 

~ J~i+l/(Wn 4) Wq( Zwn _w 4 z))d ? C.Wn _h2nJ_ Zn ZCh12 
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Since the mapping of (p, m) to the Riemann invariants (w, z) is a C1 map- 
ping, one obtains 

(4.20) / fv+-v l2 dx < cf j(Wn _ wn Z- _ zn)2 dx. 
X-1/2 Xj-1/2 

The second part of inequalities (4.17) comes directly from (4.19) and (4.20). 
This completes the proof of the lemma. 0 

Lemma 4.5. Let .(h g) be the dissipation measure resulting from the reconstruc- 
tion process, and let Q c R+ be a bounded open set. Then, for any weak entropy 
pair (ti, q), we have 

(4.21) ltr(nIq) 1I (c1/2(4)), < Chl/2, 

where (C1/2(Q)) is the dual space of CO12(Q). 

Proof. For any 0 E Co/2(Q), we decompose (1 q)g k) into the following 
two terms: 

(h ) 
xj+1/2 

((q)~ q$+ n~~/(,vl - tq(v)) dx 
(xj, tn)En x;_1/2 

(4.22) + z JX+12 (q(vn)-q(,n))( ) 
(xj, tn)EQ x-_1/2 

--II + I2. 

The first term can be directly estimated from Lemma 4.4, 

(4.23) IIII < I1011co(n) + - ii(v7)) dx < Ch& 11011cO(). 
(xi, tn)Ei2 Xj1/2 

Applying the H6lder inequality to the second term, we obtain 

II21 < {j 

1 
/2 

10(x,tn) - on 
2 dx 

(4.24) (Xj , t,)Q E fl 1 

Z 
Xj+1/2 In(vnY-n ?(Vq)12dt .{ E X 111(+)-(i~ dx} 

(Xj ,tn)Q Xjf-1/2 

Therefore, 

Z JX If(x, tn) - f2dx 

(4.25) (Xj, tn)Ea K2 11 

? IkkIlcO12(n) Z J Ix - xjI dx < CII~l/2(Q), 
(x,~E( X]1i2 

0 

and 

(4.26) |q(vn) - q(v) ? llV7nlL? |v+ - vj7 < Clv+ - v71. 
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Inserting (4.25) and (4.26) into (4.24), and using Lemma 4.4, yields 

II21 C111IZ J2xn)j1n2 V~12 - (4.27) 1 C c (-) {(xe 1 Xm1/2 + u] x} 

< Ch 1/2-, 11011C,,/2(n, . 

The estimates (4.22), (4.23), and (4.27) imply that 

I(I( ,q) q) 1 + Ch '2tIkbIlc/2(Q) < Ch 1101bIc/2(n), 

or 

||e q) )11 ( 1/2A), < Chl2t 

This completes the proof of the lemma. 5 

The following lemmas estimate the dissipation measures resulting from the 
averaging process. Their proofs are similar to [1, 6]. 

Lemma 4.6. Let Vh be the approximate solutions of the scheme (1.5), th be 
the mechanical energy, and let Q c R2 be a bounded open set. Then we have 

Me E |XXPF 
1/2 

n _ n12dx 

(4.28) (x;, tn) E x+1/2 

< Z J (t*(vn - j*(v )) dx < M2 

(Xj , tn)En X-1/2 

where M1 and M2 are positive constants independent of h. 

Lemma 4.7. Let ah be the dissipation measure resulting from the averaging 
V(iq,q) 

process, and let Q c R 2 be a bounded open set. Then there exists a constant 
C > 0 such that 

(1) for any weak entropy pair (tI, q), we have 

(4.29) q,) 1 (Co/2(^))* < C 

(2) for any convex weak entropy pair (Uj, q) and any X E CO (Q), q > 0, 
we have 

(4.30) (,q, q ) < Ch coIIIcJ(Q) 
(3) for the entropy pair (v, f(v)), we have 

(4.31) Ivf(v))II(ci (a))* < Ch112 

Now, we turn to the compactness analysis of the dissipation measures 
u 

q). 
We first state the following two lemmas which can be found in [1] and [15], 
respectively. 
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Lemma 4.8. Let Q c Rn be a bounded open set. Then 

(compact set of W - ,q(Q)) n (bounded set of W1 r() 

c (compact set of HII 1(Q)), 

where q and r are constants, 1 < q < 2 < r < oo. 

Lemma 4.9. The embedding of the positive cone of W-1 P in W- ,q is com- 
pletely continuous for all q < p. 

Theorem 4.1. Let ,uy q) be the entropy dissipation measures associated with the 
approximate solutions Vh = (Ph, mh) of the scheme (1.5). Suppose the initial 
data Vo = (po(X), mo(x)) E XM for some constant M > 0. Then, for any weak 
entropy pair (a, q), we have 

(4.32) h is compact in H.- (R+). 
Proof. Step 1. Let Q c R2 be any bounded open set. From the uniform 
boundedness of Vh, we have 

h is bounded in W- 1, x (Q). 
Ji(j, q) 

Since Q is bounded, this statement implies 

(4.33) h is bounded in W-I r(Q), r > 1. -I (I, q) 

We have from Lemma 4.5 and Lemma 4.7 that 

(4 34) jj-h +(h ) is bounded in Co/2)) 
The Sobolev embedding theorem gives 

( 1/2(f)* W~-1,4/3 

and,forany I<p<4/3, 

(4.35) (c1I2(f1))* compact w-1 P 

From (4.34)-(4.35), we get 

(4.36) egph +jh is bounded in W-1'4/3(Q), ,- ", 
(n q) (q,1q) 

and,forany I<q<4/3, 

(437) iqh + hq) is compact in W 

Step 2. For any convex weak entropy pair (a, q) , we have from (4.13)-(4.14) 
that 

(4.38) J()1 , _ ) - q h ?0. 

We obtain from (4.33) and (4.36) that 

(4.39) -q, ) (h q) _ iq)" W-'14/3 < C. 

We conclude from (4.38)-(4.39) and Lemma 4.9 that, for any 1 < q < 4/3, 

(4.40) (n - _h -) _oh ) is compact in W '(Q). 
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Thus (4.37) and (4.40) imply that, for any 1 < q < 4/3, 

(4.41) h iscompactin W-1,q(Q). 
By Lemma 4.8, (4.33), (4.41), and the arbitrariness of Q, we have 

(4.42) h is compact in H- 1(R2). 

Step 3. For any weak convex entropy pair (a, q), we know from Lemma 4.3 
that, for any constant K > 0, there is a constant C > 0 such that 

(4.43) IV2ii(v)I < CV2ij*(v), Vv E XK. 

Following an idea of Chen [3], we construct another weak entropy pair 

(q, A ) = C(n*, A *) - (q 1 q). 

We note from (4.43) that (a, q) is a convex weak entropy pair on the set Ac0 . 
By the definition of the dissipation measures (2.5), we have 

J(n, q) =J . , q.) - Ah 

Applying (4.42) to the convex entropies a* and a, we obtain 

h) is compact in H,- 1(R2 

This completes the proof of the theorem. 5 

4.3. Convergence analysis. Now we establish the convergence theorem and 
prove that the limit function satisfies the entropy inequalities. 

Theorem 4.3. Suppose that the initial data (po(x), mo(x)) satisfy 

0 < PO(X) < M, jmo(x) < MPO(x), 

for a constant M > 0. Then the approximate solution sequence Vh = (Ph, mh) 

of the scheme (1.5) has a convergent subsequence (still labeled) Vh (X, t) such 
that 

(ph(x, t), mh(x, t)) ` (p(x, t), m(x, t)), a.e., 
and the function pair (p(x, t), m(x, t)) is a generalized solution of the Cauchy 
problem (1.1 )-(1.2). Furthermore, there is a constant MT > 0 such that 

0 < p(x, t) < MT, Im(x, t)I < MTp(x, t), a.e., 
forany xeR, O<t<T. 

The proof of this theorem is similar to that of [1, 6], using Lemma 4.4 and 
Lemma 4.5. We leave it to the reader. 

5. EXTENSION TO INITIAL BOUNDARY PROBLEMS 

In this section we extend our results to the following "double piston problem", 
which is the simplest case of the mixed initial boundary value problem for the 
system of isentropic gas dynamics and has many physical applications: 

Pt +mX=0, (x ,t) ED, 

5. 1 Jmt + (m21p + p(p))x = 0, (x, t) eD, 

( (p, m) It=o= (Po(x), mO(x)) , 0< X < L, 

I m(x1(t), t) - p(xj(t), t) uj(t) = 0, t > 0, j=1, 2, 
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where p is the density, m is the momentum, p(p) = pY/y is the pressure, 
1 < y < 5/3 is the adiabatic exponent, u I(t) and u2(t) are the velocities of 
the pistons, xl (t) and x2(t) are the moving boundaries, and 

(D = {(x, t): xI(t) < x < x2(t), t > O} 

(5.2) j xI (t)= ul (s) ds, x2(t) = L + U2(s) ds. 

"Two interacting blast waves", a special case of the double piston problem with 
u (t) = u2 (t) = 0 and some specific initial data, has become the standard 
numerical test problem for numerical schemes [27]. 

Definition 5.1. A pair of bounded measurable functions (p(x, t), m(x, t)) is 
called a generalized solution of the mixed problem (5.1) in the region D if it 
satisfies the following conditions: 

(1) For any +(x, t), ig(x, t) E COO(R2), (0, Vg)(xj(t), t) 0, j = 1, 2, 
we have 

f Jj (pt + mOx) dx dt + po(x)q(x, O) dx = O 
( 5 .3) 

D 
000 

1 Jj (mMt + (pm2/p + p(p))y/x) dx dt + J mo(x)y/(x, 0) dx = 0. 

(2) For any convex weak entropy pair (q, q) and any function q(x, t) E 
CO (Ri2) satisfying 

f~,t) > O. O(x, O) -- O. +xjtt)-O j = I1, 2, 

we have 

(5.4) Jj (Q(V) t + f(v) o) dx d t > 0. 

The construction of the generalized solution for the mixed problem (5.1) with 
the following generalized Riemann data can be found in [16]: 

(5.5) f (P m) It=O= (Pr , mr) , for x > 0, 

m(uO t, t) - uop(uo t, t) = 0, for t > O. 

where u0, Pr, mr are three constants. Once we have these generalized Riemann 
solutions, we can construct the Godunov scheme and prove the existence of the 
generalized solution for the mixed problem. The following theorem is given by 
Takeno [22]. 

Theorem 5.1. There is a global generalized solution for the mixed initial- 
boundary value problem (5.1). 

By the properties of the solutions of the Riemann problems and the gener- 
alized Riemann problems, and the convergence of the Godunov scheme, we 
have the following properties for the generalized solution (constructed by the 
Godunov scheme) of the mixed problems (5.1). 
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Lemma 5.2. For the generalized solution constructed by the Godunov scheme, for 
any t1, t2 E [0, T], any convex weak entropy (U, q), and any q E COc(R2), 
q > ?0, (xj(t), t) = 0, j = 1, 2, the solution v(x, t) satisfies 

ft2 X2(t) 

//j (i((v)qt + q(v)qx) dx dt 
(5.6) JtJxl(t) 

1X2(ti) X2(t2) 

, n (v(x, tI))$(x, t)dx- / r (v(x t2)) O(X, t2) dx. 
I (ti) I (t2) 

Lemma 5.3. Suppose that the Riemann invariants (wo(x), zo(x)) of the initial 
data (po(x), mo(x)) satisfy 
(5.7) 

zo(x) < u(t) ?< 2(wo(x) + zo(x)), (wo(x) + zo(x)) < u2(t) < wo(x). 

Then the regions AC, C > 0, are the invariant regions for mixed problems (5.1). 
More precisely, if the initial data belong to Ac, then the generalized solutions 
constructed by the Godunov scheme for the mixed problem (5.1) also belong to 
Ac. 

As in the construction of the approximate solutions of the scheme (1.5) 
for the Cauchy problem (1.1 )-(1.2) in ?3, we denote h and At as the space 
step length and the time step length, respectively. We partition the real line 
of the space variable into cells, with the jth cell centered at xj = jh, j = 
0, ? 1, ?2, .... We denote {in, .Jn } as a sequence of integers such that the 
moving boundaries xi (t) and x2(t) at the time t, satisfy 

(5.8) x.n-112 < XI(tn) < Xjn+112 , xJn-l/2 < X2(tn) < XJn+112K 
We define internal cells, for n = 0, ,. . ., and j = jn+ 2, in + 3, .Jn - 2 

(5.9) In = [xj-112, xj+112) x [tn, tn+1), 

and boundary cells, for n = 0, 1, ... 

(5.10) 1~ -{(x,t), XI (t)<X < Xjn+312, tn<t < tn+11 

B2 = {(X t) , XJn-312 < X< X2(t) , tn t < tn+l} 

We let At/h be small enough such that 

(5.11) XI (tn+I) < Xj,+312 , X2(tn+l) > XJn-312- 

As in the standard MUSCL scheme, there are three steps: reconstruction, 
solution in small time, and cell averaging. The reconstruction and the cell 
averaging steps are the same as for the Cauchy problem (see ?3). In the "solution 
in small time" step, we also have the generalized solution for both internal and 
boundary cells as a result of the convergence of the Godunov scheme for mixed 
problems. 

We can also use the following linear interpolation xh (t) to approximate x1 (t) 
in the MUSCL scheme. On the intervals tn < t < tn+1, n = 0, 1, 2, ..., we 
define 

xi(t) = x (tn) + At J ul (t) dt, 

with xh(0) = 0. 
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Theorem 5.2. Let Vh(X, t) = (ph(X, t), mh(x, t)) be the approximate solutions 
of the above scheme for the mixed initial boundary value problem (5.1)-(5.2). 
Suppose that the initial data (po(x), mo(x)) satisfy 

(5.12) 0 < po(x) < M, ImO(x)I < Mpo(x), 

for some constants M > 0, and the moving boundaries x1 (t) and x2(t) satisfy 

(5.13) x2(t) -xI(t) >?(t), fort >O, 

where d (t) is some positive continuous function. Then there exists a convergent 
subsequence (still labeled) Vh (X, t) such that 

(5.14) (Ph(X, t), mh(x, t)) -+ (p(x, t), m(x, t)), a.e. (x, t) E D 

and the function pair (p(x, t), m(x, t)) is a generalized solution of the mixed 
problem (5.1)-(5.2). 

The proof of this theorem is similar to that of the Cauchy problem (see ?4) 
except that we use Lemma 5.2 and Lemma 5.3 instead of Theorem 2.2 and 
Lemma 4.2. We estimate the boundary cells and the internal cells separately. 
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